Learn R Programming

dprop (version 0.1.0)

Beta exponential distribution: Compute the distributional properties of the beta exponential distribution

Description

Compute the first four ordinary moments, central moments, mean, variance, Pearson's coefficient of skewness, kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the beta exponential distribution.

Usage

d_bexp(lambda, alpha, beta)

Value

d_bexp gives the first four ordinary moments, central moments, mean, variance, Pearson's coefficient of skewness, kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the beta exponential distribution.

Arguments

lambda

The strictly positive scale parameter of the exponential distribution (\(\lambda > 0\)).

alpha

The strictly positive shape parameter of the beta distribution (\(\alpha > 0\)).

beta

The strictly positive shape parameter of the beta distribution (\(\beta > 0\)).

Author

Muhammad Imran.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.

Details

The following is the probability density function of the beta exponential distribution: $$ f(x)=\frac{\lambda e^{-\beta\lambda x}}{B(\alpha,\beta)}\left(1-e^{-\lambda x}\right)^{\alpha-1}, $$ where \(x > 0\), \(\alpha > 0\), \(\beta > 0\) and \(\lambda > 0\).

References

Nadarajah, S., & Kotz, S. (2006). The beta exponential distribution. Reliability Engineering & System Safety, 91(6), 689-697.

See Also

d_beta

Examples

Run this code
d_bexp(1,1,0.2)

Run the code above in your browser using DataLab